Blog from July, 2019

Jay Haughton, RN

All across the United States, the delivery of care is stressful for both patients and doctors. Patients want better access to their information and to be actively engaged in their own care. Doctors want to spend more time with patients but face intense time pressures.

According to a 2018 survey, 60 percent of doctors report they spend between 13 to 24 minutes on average with each patient. During some of these precious minutes, they are struggling to follow electronic health record (EHR) requirements and processes. Current EHRs are not work-flow confluent as the patient is asked the same questions multiple times. Providers struggle with fragmented systems that require separate log-ins, and many of the processes are simply not clinically useful.

Click fatigue and multitasking can lead to mistakes. It’s estimated that multitasking immediately decreases productivity and accuracy by 40 percent. Additionally:

  • 70 percent of doctors using EHRs attribute the bulk of their administrative burden to the software, according to a 2017 study. However, doctors’ opinion of EHRs improved when their medical institutions made efforts to optimize how the software is used.
  • 92 percent of clinicians say lengthy prior authorization protocols have impeded timely patient access to care and harmed patient clinical outcomes, according to an American Medical Association survey.
  • 89 percent of senior patients (age 55 and older) surveyed said they want to manage their own healthcare—and will require better health technology access to do so.

A more thoughtful EHR can deliver a better experience for both sides. What’s needed is a tool that leverages cutting edge technology to deliver better usability, flexibility, and value, designed by clinicians who truly understand the healthcare workflow. For patients, an EHR should provide a patient portal that integrates data into a clinical registry, allowing access to all of their data in a single location.

Electronic enterprise-wide data is essential to manage the patients doctors care for every day. Unfortunately, current EHRs typically do not deliver the insights or tools providers need to manage their high-risk patients when they are not in the hospital. Even if the specific EHR does offer such population health management capabilities, it again requires excessive amounts of manual data access and manipulation, leading to time wasted and higher costs.

With the introduction of Medicare Access and CHIP Reauthorization Act (MACRA) and the 2015 Merit-based Incentive Payment System (MIPS), along with APMs, providers are being reimbursed by performance versus fee-for-service. One of the performance measurements is Promoting Interoperability (formerly Advancing Care Information), and new CEHRT qualified EHR systems are ready to meet this new requirement.

To improve outcomes via improved data sharing and automation, the next generation of EHRs offer these four improvements:

Usability: Make key clinical data easily available by streamlining workflows and navigation with fewer clicks and a common patient banner, which puts certain patient information in the same location regardless of application. This empowers providers to focus on the work that matters most. The EHR should integrate and aggregate data into a clinical registry, allowing patients to access all of their data from a single portal.

Flexibility: Care organizations have numerous regulatory requirements and certification standards. A better EHR allows organizations to create additional fields to meet the unique needs of their workflow. Organizations can define and link fields to medical code sets to stay current with ever-changing regulatory requirements and advancements in healthcare information technology.

Technology: Leverage the latest technology for a scalable and portable solution that meets doctor and patient needs today, while avoiding vendor lock and enabling constant improvements.  Solutions that use cloud-based infrastructure can do this while keeping patient data secure and up- to-date.

Value: Next generation  EHR solutions do not need to be costly. They can provide greater value—including all implementation and support costs—without sacrificing functionality. Cloud-based infrastructure eliminates the demand for large in-house IT staffs and data storage, allowing outsourced IT to handle the heavy lifting.

Both sides of the healthcare equation are under strain, and it doesn’t have to be this way. Technology has created the challenge, and better technology can provide the solution. It’s past time to fulfill the original promise of EHRs—reducing risk, improving efficiencies, and supporting high quality patient outcomes.

In a clinician survey, researchers found healthcare organizations that invest in EHR training report higher levels of EHR user satisfaction.

Kate Monica 

Administering sufficient EHR training to clinicians may be the key to improving rates of EHR user satisfaction, according to a recent clinician survey by the KLAS Arch Collaborative.

Researchers including Julia Adler-Milstein, Christopher A. Longhurst, and others analyzed survey data from the Arch Collaborative from tens of thousands of EHR users to identify the factors that influence whether a user will report higher levels of EHR satisfaction.

“We as an industry have an opportunity to improve EHR adoption by investing in EHR learning and personalization support for caregivers,” wrote researchers in the study.

“If health care organizations offered higher-quality educational opportunities for their care providers — and if providers were expected to develop greater mastery of EHR functionality — many of the current EHR challenges would be ameliorated,” they stated.

Researchers noted during their review that users of the same EHR system often report significantly different experiences with the software. Less than 20 percent of variation in user experience could be explained by EHR software type, while over 50 percent of variation resulted from differences in the way clinicians interacted with their system, researchers wrote.

“Similarly, within the seven EHR solutions measured, a very unsuccessful provider organization was identified in each customer base, and a successful customer was identified in six of the seven customer bases,” researchers stated.

Healthcare organizations interested in improving rates of EHR satisfaction among clinicians are more likely to see improvements if they invest in EHR training and assist users in becoming more adept at navigating EHR technology rather than investing in a new EHR implementation.

“In the Arch Collaborative large dataset, the single greatest predictor of user experience is not which EHR a provider uses nor what percent of an organization's operating budget is spent on information technology, but how users rate the quality of the EHR-specific training they received,” researchers wrote.

The team found 475 instances in their research in which two physicians in the same specialty used the same EHR system at the same organization and reported very different user experiences.

“In over 89 percent of these instances, the physician who strongly agreed also reported better training, more training efforts, or more effort expended in setting up EHR personalization,” emphasized researchers.

Researchers recommended healthcare industry stakeholders implement standards to ensure clinicians across organizations receive high-quality EHR training.

Recommending healthcare organizations administer at least 4 hours of EHR training may help to improve rates of EHR satisfaction industry-wide.

“Organizations requiring less than 4 hours of education for new providers appear to be creating a frustrating experience for their clinicians,” wrote researchers. “These organizations have lower training satisfaction, lower self-reported proficiency, and are less likely to report that their EHR enables them to deliver quality care.”

Standardizing the way EHR training should be structured would be more challenging. Researchers observed significant variation in the ways different healthcare organizations structure their training and educational programs, and were unable to indicate a single training program structure that achieved better results than every other.

However, researchers did note user personalization features were typically underutilized during EHR training programs.

“One of the most consistent observations seen across the collaborative organizations is how powerful EHR personalization can be and how much adoption is lacking today,” wrote researchers.

Investing resources in ongoing education that assists EHR users with system personalization may help to promote EHR optimization and improve rates of EHR satisfaction.

Looking ahead, researchers recommended healthcare organizations prioritize EHR training so that clinicians fully understand the limits of their systems and are confident in their ability to navigate the technology.

“While the Arch Collaborative research has convinced us that the greatest opportunity for progressing the value of the EHR currently lies in improved user training, this approach clearly needs to be balanced with a parallel focus on better designed and smarter software that can better meet nuanced needs of health care,” noted researchers.

“For EHR software to revolutionize health care, both the software and the use of that complicated software need to progress in parallel,” the team added.

Samara Rosenfeld

Inpatient violence risk assessments can be performed automatically using available clinical notes without sacrificing predictive validity, according to the findings of a study published in JAMA Network Open.
Researchers used machine learning to analyze clinical notes in the electronic health records (EHRs) of two psychiatric institutions to predict inpatient violence. Investigators measured each site’s area under the curve to determine predictive validity. The first site had an area under the curve of 0.797, while the second registered at 0.764, meaning it is possible to use routinely registered clinical notes for automatic violence risk assessment. 

The model performed with a specificity between 0.935 and 0.947 and a sensitivity between 0.334 and 0.336.
“Inpatient violence remains a significant problem despite existing risk assessment methods,” the study authors wrote. “The lack of robustness and the high degree of effort needed to use current methods might be mitigated by using routinely registered clinical notes.”
The research team used the first site, the psychiatry department of the academic medical center in Utrecht, Netherlands, for internal method validation. The data set consisted of 3,201 admissions of 2,211 unique patients. The second site, a general psychiatric hospital that delivers secondary care in Rotterdam, Netherlands, was used for external method validation. This data set consisted of 3,277 admissions of 1,937 unique patients.
Researchers extracted clinical notes written by psychiatrists and nurses from patients’ EHRs. The research team included notes written in the four weeks before admission up to the first 24 hours of admission. They excluded admissions with fewer than 100 words registered after 24 hours.
Reports of violent incidents helped determine the outcome for each admission. Staff members involved in a given incident at either site filled in structured information, a textual description of the incident and the severity of the incident as measured by the Staff Observation Aggression Scale-Revised.
Violent incidents included all threatening and violent behavior of verbal or physical nature directed at another person. This excluded self-harm and inappropriate behavior like substance abuse or vandalism.
Researchers examined predictive power hidden in the notes by extracting the 1,000 most frequent terms. A chi-squared test helped assess the strength of the term’s association with the outcome. The research team selected the top 10% of predictors based on their chi-squared test scores in 1,000 repeated samples.


Terms such as “aggressive,” “angry,” “verbal,” “threatening” and “irritated” can be directly associated with violence. Terms like “reacts,” “walks” and “speaks” describe behavioral cues that can be indirectly associated with violence.
Researchers then used a machine-learning approach to perform a violence risk assessment. Algorithms can detect patterns in historical data, and prediction can help the course of treatment based on those patterns.
The approach transformed clinical notes into a numerical representation and then fed the representations into a classification model.
Researchers trained the model using the internal set of clinical notes.
The risk of violent outcomes for patients with predicted high risk compared to low risk was 5.121 in the first site and 6.297 in the second.
“In the near future, we envision that further advancements towards a data-driven psychiatric practice will be made and that EHR data will become an even more valuable asset in supporting important decisions in the clinical practice,” the authors wrote.

Nathan Eddy

Pre-treatment scans were input into a deep-learning model, which analyzed the scans to create an image signature that predicts treatment outcomes.

Artificial intelligence and machine learning networks could help personalize radiation therapy for lung cancer, according to a new study by the Cleveland Clinic.

The research, published in The Lancet Digital Health, centers around an artificial neural network built with a large dataset of patients receiving lung radiotherapy.

That network, which allows each clinical center to utilize their own CT datasets to customize the framework and tailor it to their specific patient population, was built using CT scans and the electronic health records of nearly a thousand lung cancer patients treated with high-dose radiation.

The company's framework uses probability estimates to select an optimized dose that prevents treatments failures to a set level, for instance a five percent probability of failure.

Pre-treatment scans were input into a deep-learning model, which analyzed the scans to create an image signature that predicts treatment outcomes.

This image signature was combined with data from patient health records, to generate a personalized radiation dose using advanced mathematical modeling.

"AI can learn from imaging and electronic health records and make predictions about the likelihood an individual patient could fail radiation treatments," lead author Dr. Mohamed Abazeed, a radiation oncologist at Cleveland Clinic's Taussig Cancer Institute and a researcher at the Lerner Research Institute, told HealthcareITNews.

"Therefore," he said, "AI can help individualize radiotherapy treatments for patients with cancers in the lung."

Dr. Abazeed explained they will assess the transportability of the model across varied hospital systems via local implementation or using large-scale federated datasets.

In the future AI-models could be optimized based on different target populations based on ethnicities, gender or age, medical settings (community hospital or academic center) geographical locales  or even include temporally distinct populations.

"We will also test the putative supremacy of iGray--individualized dose--recommendations head-to-head with standard of care recommendations in a prospective clinical trial," Dr. Abazeed said.

In reference to those who believe AI technology still has much farther to go before it has practical applications for the medical and healthcare sectors Dr. Abazeed noted a prerequisite for scientific progress is the willful suspension of disbelief.

"In large part driven by this work, we are on the precipice for practical and innovative implementations in the highly standardized and data-replete discipline of radiation oncology," he said. 

The study follows news that French biopharmaceutical company Sanofi and tech giant Google are partnering to leverage machine learning, AI and deep analytics technologies across data sets to better understand major diseases.

Meanwhile, a new study from Innovaccer explores the ways its AI algorithms could be put to work to improve risk scoring and stratification and enhance value-based care initiatives.

Benjamin Harris

Many illnesses are easy to treat if caught in time. New EHR studies show how optimizing data can spot problems clinicians might overlook.

Early detection is a mantra in hospitals: Find a nascent condition before it can morph into something serious and you can alleviate suffering, improve care and save lives.

Symptoms can be hidden in plain sight or can be masked by other known illnesses. In these manners, thousands of patients a year fall through the cracks and become seriously ill.


Two new early detection algorithms that integrate with electronic health record data are looking to make the odds more favorable.

Johns Hopkins has developed an algorithm called TREWS that can detect sepsis in patients far more reliably than a clinician alone, and the American Medical Association has published guidelines on optimizing EHRs to identify patients at risk of diabetes.


In the case of both type 2 diabetes and sepsis, the at-risk population is broad and the conditions for both diseases are widespread: Accurately targeting those most likely to be affected takes more detailed hunting than many clinicians can do.

Johns Hopkins researchers note that one in 10 sepsis alerts from a “dumb” EHR system are true – their algorithm brings that down to one in two. Similarly, the AMA says that while many Americans are at risk of type 2 diabetes, optimizing an EHR to monitor relevant test results and make it easy for clinicians to order additional testing – both steps that empower providers to better manage their population health.

“One of the challenges traditionally with sepsis has been making sure the patient gets all of the interventions within the first three hours,” says computer science graduate student Katharine Henry, who worked on the Johns Hopkins TREWS program.


Artificial intelligence-assisted detection technologies are helping clinicians find needles in haystacks in every specialty.

When a disease like sepsis can present through very common symptoms like elevated heart rate or temperature, a doctor can’t be sure of a false positive based on a few metrics. Relying on an optimized EHR algorithm that monitors more data points than a clinician alone could, however, means the EHR does the heavy lifting on the data end and frees a provider up to take action when needed.

Similarly, much like a disease like type 2 diabetes can be brought under control through management of lifestyle, a healthcare provider can nip many instances in the bud when they manage the health of their patient population well. Providing monitoring tools and predefined courses of action through an EHR makes identifying patients and taking appropriate action that much easier.